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The author examines the influence of rotation of the body and external swirl of the stream 
on flow of a viscous gas near the stagnation line of blunt axisymmetric bodies with permeable 
surfaces at low and medium Reynolds numbers. The study is made using the parabolized Navier- 
Stokes equations, which allow for the influence of the effects of molecular transfer in the 
entire compressed layer, :including the region of transition through the shock wave. There is: 
obtained a numerical solution to the problem over a wide range of change of the Reynolds num- 
ber, the blowing parameter, and the other governing parameters. It has been shown that the 
presence of a nonzero component of the velocity vector in the circumferential direction in the 
shock layer can lead to a qualitative change of the flow character. 

Axisymmetric swirling flows of liquid or gas are an important practical special case of 
three-dimensional flows in which all three components of the velocity vector differ from zero, 
but, because of the symmetry, the flow parameters depend only on two variables. This class 
of flows was investigated earlier only for quite large Reynolds numbers in the boundary layer 
model [i, 2] or in the thin shock layer model [3-5]~ There are also papers (see, e.g.,[6-8]) 
in which the local similarity approximation of the Navier-Stokes equations has been applied 
to study nonswirling flows of a viscous gas. 

i. Statement of the Problem. We consider uniform flow of a rarefied gas incident at zero 
angle of attack on an axisymmetric smooth blunt body with a permeable surface, rotating with 
angular velocity ~ about its axis. We postulate that in the vicinity of the symmetry axis 
in a rectangular coordinate system (x l, x 2, x 3) (Ox I is the flow axis) the parameters of the 
oncoming stream satisfy the conditions 

* * ~ ( 1 . 1 )  rot v =  = (Q=, 0, 0) ,  p= = const,  p ~  = p=0 + ~ ( ~ ) / 2  

(P~0 i s  t h e  gas  p r e s s u r e  : in t h e  oncoming  s t r e a m  on t h e  symmet ry  a x i s  r = 0 ) .  

T a k i n g  i n t o  a c c o u n t  t h a t  t h e  Knudsen number  i s  q u i t e  s m a l l ,  we s h a l l  s t u d y  t h i s  f l o w  in  t h e  
f r a m e w o r k  o f  t h e  N a v i e r - - S t o k e s  e q u a t i o n s .  We c h o o s e  a c u r v i l i n e a r  c o o r d i n a t e  s y s t e m  ( r  ~ e  ~ , )  
as  f o l l o w s .  We t a k e  t h e  c o o r d i n a t e  ~* a l o n g  t h e  n o r m a l  t o  t h e  w e t t e d  s u r f a c e ,  ~* i n  t h e  c i r c u m f e r e n -  
t i a l  d i r e c t i o n ,  and as  t h e  c o o r d i n a t e  $* we c h o o s e  t h e  c e n t r a l  a n g l e  o f  a s p h e r i c a l  c o o r d i n a t e  
s y s t e m  whose  c e n t e r  c o i n c i d e s  w i t h  t h a t  o f  a s p h e r e  t o u c h i n g  t h e  s u r f a c e  o f  t h e  w e t t e d  body 
a t  t h e  s t a g n a t i o n  p o i n t .  The s o l u t i o n  o f  t h e  s y s t e m  o f  N a v i e r - S t o k e s  e q u a t i o n s  n e a r  t h e  s t a g -  
n a t i o n  l i n e  we r e p r e s e n t  i n  t h e  fo rm o f  e x p a n s i o n s  in  power  s e r i e s  in  s i n  ~* and cos  ~*: 

u* = V-*- (sin ~*ul (~) -4- . . . ) ,  v* = - -  V~ (cos~*v o (~) + . . . ) ,  

W* = V* (sin ~*W 1(~)+  . . , ) ,  p * = p * ( p 0 ( ~ ) +  " " ) ,  

= Mo~r~o (To (;) + ...), T* if? - -  1) 2 * 

P : g  ~ $ , 2  p~V~ (P0 (~) + sin~ ~*P2 (~) + . . . ) ,  

; ,  = n ; ,  ~* = ~ :  (No (~) + ...). 

(1.2) 

Here u*, W*, and v* are the physical components of the velocity vector in the directions 
$*, N*, ~*, respectively; P*, T*, p*, D* are the pressure, absolute temperature, density and 
viscosity of the gas; R is the body radius of curvature at the stagnation point; and V~, M~ : 

are the absolute velocity and the Mach number of the incident flow at the stagnation point. 
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If we substitute expansions (1.2) into the Navier-Stokes equations in which we have 
omitted terms which are negligible in the flow regimes considered [9], then, because of the 
ellipticity of the original problem, the system of equations for the coefficients of this ex- 
pansion in any approximation contains unknown quantities from a higher approximation, and 
therefore the problem remains unclosed. To close it we apply the method of truncated series 
suggested in [6, i0]. Here the solutions in the first and second approximations differ in-!~ 
significantly [i0], and this approach is quite accurate. This is supported by the results of 
[11-14], where it is shown, by comparison with the solutions of two-dimensional problems and 
experimental data, that for the case of flow over a spherically blunted body the local simi- 
larity approximation leads to error mainly in the thickness of the perturbed region ahead of 
the blunt body. This error is about~10%, increases as M= decreases, and depends slightly on 
Re. Since, as the analysis of [15] shows, the possibility of using the local similarity ap- 
proximation to investigate flow on the stagnation line is determined by the parabolic degen- 
eracy of the original problem and is associated with a thin shock layer, it is valid to use 
this model even to calculate swirling flows, since, other conditions being equal, the centri- 
fugal forces arising here lead to greater spreading of the gas in the compressed layer and to 
a decrease of its total thickness. 

Finally, the system of ordinary differential equations for the first terms of expan- 
sion (1.2), written in dimensionless form and transformed to Dorodnitsyn-type variables, has 
the form (we omit the subscripts 0 and i) 

a~ W (i.3) 
z = 2  (l+~)pd~, u--  o~' w ~ , l /~ '  

0 

v = ~ ' ,  1 2~ ~3/2 

( * 
I ~ ( ~ : # o ) ,  

~,~R ] V~o 
P = = P = - - T ~ '  ~ -  . ,  w,=~r 

~" I--:~- (~* = o); 

t 1 ~)' 1 ( w ~ , w ~ _ _ ~ . , , ) ,  (1.4) 
(~")' = P~' - ~" + ~- (~')~ e ~ ~' - T 

l r ,h" ~2 '~' p~ ~,, ~ '  ~ --  t T', 
, ~ + - T  = W  + - ~ - ~ " - - - T  

~- * ' r - - r z  - T J '  
, 

p., -~-~w,w 2v Ira' ~ , ~ J + T + - r  9" m'21 = - -  -#--I" 

Here the primes denote derivatives with respect to z; o = const is the Prandtl number; Re~ = 
pSV*~R/D$ ; the volumetric viscosity coefficient is put equal to zero, and the coefficient of 
shear viscosity ~ is proportional to the absolute temperature to the power m. 

The system of equations (1.4) must be solved with boundary conditions applied on the 
body surface and in the incident stream. Taking account of Eq. (i.i) and also neglecting 
the effects of slip and temperature jump on the body surface, which, as was shown in [16], 
are quantities of lower order for ~ = (~ - l)/(y + i) + 0, we write these conditions in the 

variables (1.3) in the form 

~=(P@w=~w, ~'=0, T=Tw, ~=i, w=Qdw. ~=0); (1.5) 

r  ~ '= 1 ,  ~ = r  T=[@--I)M~] -~, (1.6) 
w = ~ / w , ,  p~ = 0 ( z - -+  oo). 
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Equations (1.4) have special points [6-8, 17], one of which correspondsto the incident 
flow at infinity, and the other to the stagnation point located either on the body surface in 
the case of an impermeable wall [6, 17], or inside the flow (when blowing is present [7, 8]). 
As is shown by analysis, the presence of gas swirling in the flow does not affect the nature 
of the special points of Eq. (1.4). 

2. Numerical Solution of the Problem. The boundary problem of Eqs. (1.4)-(1.6) was 
solved numerically using a finite difference scheme [18] with order of approximation 0(Az4). 
Here each of the equations of third order was reduced to a system of equations of first order. 
Then these equations were linearized in an appropriate manner and approximated by finite dif- 
ferences with an accuracy of 0(Az4). The system of difference equations thus obtained was 
solved in turn in the order in which Eq. (1.4) is written. A marching method was used in 
which the boundary conditions were transferred from the body surface to the external boundary. 
The next equation of Eq. (1.4) was integrated from the external boundary to the body surface 
by Simpson's Rule with the same accuracy. To make it easier to integrate all the equations 
with a single algorithm the second boundary condition for the function ~ at infinity(~-+~) 
was transferred, analogously to [8], to the body surface by a single integration of the mo- 
mentum equation in the normal projection from some point z~ located in the incident flow to 
the surface. The new boundary condition has the form 

Zoo 

3 Reoo ~w - -  ~w t + ~ (zoo) - -  f ~ , ~  + c~'~' + + T dz + --  T~, = O. 
0 

For a fixed difference mesh, as Re increases the zone of transition through the shock 
becomes less than the integration step size, leading to oscillations of the numerical solu= 
tion. Therefore, at large Re (Re~ e 2.5.103), when the shock wave structure has only a 
slight effect on the flow characteristics in the shock layer, there was an artificial in- 
crease of the viscosity in the shock region, for which the position was determined by the be- 
havior of ~'. As a result the shock layer region contains not less than 3-4 cells of the 
difference mesh. In the boundary layer region the viscosity remained true, but at large Re 
there was bunching of the difference mesh there. 

In all the calculations we assumed X = 1.4, o = 0.71, m = 0.5. 
were varied over the following ranges: 

The remaining parameters 

t0 ~ Re~ ~ 2,5.i04, 0 >//~w ~ --0,5, (2.2)  
0.05 4 T ~  0 2 , 0 ~  2 , 0 ~  ~ 2 .  

In the solution process we found profiles of the desired functions across the compressed 
layer, and also the coefficients of friction and heat transfer on the body surface: 

d~ V ~  dT VV~ Re = __P%v%n (2.3) 
= ~ d; R ~ '  q = ~ d; ~ Re~' ~* (r~)" 

3. Discussion of the Results. We first address the question of applicability of the 
uniform gas model to calculate real flows about blunt bodies. Generally speaking, in flow 
over bodies dissociation and ionization reactions can proceed in the perturbed flow regions. 
However, it follows from [17] that there is quite a large range of altitudes, flight speeds 
and body sizes for which the characteristic flow Damkeller number is small, and therefore 
the chemical reactions can be considered as frozen, and the uniform gas model is applicable 
with sufficient accuracy. It is known also that the presence of chemical reactions in the 
flow has only a slight influence on such flow characteristics as the pressure distribution.. 
In addition, the uniform gas model with an effective adiabatic index ~ is widely used in 
the literature to describe fiows in chemical equilibrium. In these situations the results 
obtained with the uniform gas model retain their practical value and can be used to model 
the real flows. 

Figures 1-4 shows some of~the computed results. Figure i shows profiles of u (lines 
i, 3), w (lines 2, 4) and T (lines 5, 6) across the compressed layer for T w = 0.15, ~w = 0 
for different swirl values of the incident flow (~ = 0.75; 1.375 - a, b) and Reynolds num- 
ber (Re~ = i00, lines 3-5, Re~ = 103 , lines i, 2 and 6). It can be seen that for Re~ = I00 
the shock wave is quite smeared, and that even for Re~ = 103 the flow goes into the viscous 
shock layer regime and the thickness of the shock layer is 2-3% of that of the entire com- 
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pressed layer. As is shown by the computations, the presence of gas swirl has quite a strong 
influence on the nature of the flow in the perturbed region. This can be seen clearly in 
Fig. 2, which shows profiles of u (lines 1-4), w (5-6) and v (7-8) across the boundary lay- 
er on an impermeable surface for Tw= 0.15 and Re~ = 104 , 2.5.104 (a, b) and various values 
of the swirl parameter of the incident flow (~ = 0.01 for lines 4, 6, 8, ~ = 0.875 for 3, 

= 1.25 for 2, ~ = 1.6 for i, 5, and 7). As ~ increases the u profile loses its monotonic 
nature and acquires the character of a maximum near the shock. The appearance of a maximum 
is explained by the fact that the flow is strongly influenced in this region by centrifugal 
forces which become considerable at that point of the compressed layer and are not equal 
to the pressure gradient forces. 

For fixed ~ the value of this maximum increases with increase of Re and tends to some 
finite limit, which agrees well with the asymptotic analysis of the boundary problem of 
Eqs. (1.4)-(1.6) for Re= + ~. As Re~ decreases the influence of the effects of molecular 
transport become appreciable over the entire perturbed flow region, the maximum decreases, 
and, beginning at a certain Re~, it disappears. In contrast with the tangential component 
of the velocity vector the influence of ~ on the profile of the circumferential velocity 
component is less apparent. We note also that, other conditions being equal, an increase 
of ~ leads to a decrease of the standoff distance of the shock from the body surface. 

Analysis of the computations has shown that if the wetted body is rotated, in addition 
to swirl of the incident flow, then the flow structure becomes even more complex. In par- 
ticular, for large enough Re (Re= ~ 2"103 ) the influence of body rotation is localized in the 
boundary layer near the body surface, and consequently the u profile near the body may have 
additionally two local extrema - a maximum and a minimum, while the profile of the circum- 
ferential velocity component has a characteristic minimum. As Re decreases the local extrema 
in the u profiles near the surface disappear, and the minimum of w increases and moves to 
the center of the shock layer. 

Blowing of gas from the bodysurface leads to nonlinear effects of interaction with 
the swirling flow in the compressed layer. A typical example of the dependence of the flow 
structure on the blowing parameter is shown in Fig. 3, which gives profiles of u (lines 
1-3) and T (lines 4-6) across the layer for Re~ = 104 , ~ = 0, ~w = 2.0 for various values 
of ~w (~w = 0 for lines i, 4, ~w = -O.i for 2, 5, ~w = -4].2 for 3, 6). It can be seen 
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that as the gas flow rate through the surface increases (other conditions being equal) 
the u profile ceases to be monotonic and acquires characteristic extrema at the boundaries 
of the mixing layer which is formed between the two inviscid layers adjacent to the body 
surface and the shock wave. 

It follows from the computed results that at small Re blowing with flow rates --~w~ 
0.15 has little effect on the nature of flow in the compressed layer, and on the heat flux 
and the friction coefficient on the body surface. As Re increases, for fixed gas flow rate 
through the surface, the influence of blowing increases - the shock standoff distance in~ . 
creases, and near the body surface a layer of blown gas is clearly visible. On the whole, 
the analysis shows that, as was true for two-dimensional flows [7], with regard to the char- 
acteristic of the blowing intensity and its influence on the flow structure one should not 
use the relative mass flow rate of gas through the surface ~w , but the blowing parame- 
ter, usually applied in the theory of boundary layers and viscous shock layers [19], F w = 
--~wVRe/2[(~--l)/2Y]I/4(--P~w)-i/~. In particular, the numerical results support the conclu- 
sion, made in [9] on the basis of an asymptotic analysis, that at large Re and F w >> I the 
entire perturbed flow region can be divided into four sublayers: the transition region 
through the shock layer, the inviscid shock layer and the layer of blown gas, adjacent, 
respectively, to the shock wave and the body surface, and also a mixing layer located be- 
tween them. And while we can neglect the effects of molecular transport to a first approx- 
imation" in thez inviscid shock layer and the blown gas layer, these effects play the main 
role in the mixing layer and in the shock wave. 

Figure 4 shows the influence of flow swirl on the dependence on Re of the heat transfer 
coefficient q and the friction factor T (lines a, b) on the body surface, for T w = 0.I, 
�9 w = 0 , ~w = 0, ~ = 0; 1.5 (lines, I, 2). It can be seen that these distributions have 
a characteristic local maximum, and for �9 the maximum is more strongly pronounced, and its 
location is displaced towards smaller Re. Other conditions being equal, swirl of the in- 
cident flow and rotation of the body increase this local maximum in the distributions of 

and q in comparison with the cases ~ = ~w = 0. The position of this maximum is practically 
independent of ~ and ~w, but while an increase of gw leads to an increase of T and q over 
the entire Re range, an increase of ~ increases ~ and q for 0.5 S log Re S 3.0 and decreases 
it for log Re ~ 0.5 and log Re e 3.0. 

It should be noted that an increased swirl of the incident flow for gw = 0 results 
in T and q going to their boundary layer values for large enough Re compared with the case 

= 0. For example, for ~ = 0 the difference between the value of ~, computed for Re = 
103 and 104 is 6%, and for S = 1.5 it is 35%. For the heat transfer coefficients these 
differences are, respectively --2 and 18%. Thus, for large enough swirl of the incident flow, 
for correct construction of the asymptote of the Navier-Stokes equations for large Re one 
should take account of viscous-inviscid interaction, which is not accounted for in the usual 
formulation of the problem in the first approximation of boundary layer theory. 

In conclusion we compare the numerical results obtained by this method with some results 
obtained using the complete [12] and the parabolized Navier-Stokes equations [20]. ~igure 
5 shows profiles of the density across the compressed layer for Re~ = 30, M~ = 4.2, y = 
i~4, ~W = ~ = 0, ~=0, Tw = 0.26; 1.01 (lines i, 2) and ofvelocity u for Re~ = 700, 
y = 5/3, T w = 0.03, ~w = ~ = ~=0 (line 3). Here "a" is results of this work, and "b" 
and "c" are from [12] and [20], respectively. The comparison shows quite satisfactory agree- 
ment. 
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